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1 Introduction

The point-spread function (PSF) of ground-based optical telescopes is largely determined by
atmospheric conditions. Since these conditions change rapidly, the PSF of each observation
is unpredictable. However knowledge of the PSF can be important. For example, the shape
of the PSF can be used as a matched filter for detecting faint sources. The relative PSF
widths of multiple observations can also be used to weight a sum of exposures to optimize
the resolution of the summed image.

The PSF of an image can be estimated directly if the image contains any isolated stars.
The appearance of each star is essentially an image of the PSF, scaled by the flux of the
star. The PSF is harder to estimate when the image only contains resolved sources or
weak point sources. This document describes one way to estimate the PSF in such cases,
by comparing the ground based images to higher resolution images from the Hubble Space
Telescope (HST). This technique is primarily designed for observations with Integral Field
Spectrometers (IFS), provided that their wavelength coverage encompasses the bandpasses
of one or more HST imaging filters. In particular, it was developed for use with the Multi
Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) in Chile. It can
be used to determine the relative PSF widths of individual exposures, so that they can
be weighted appropriately when they are combined. More importantly it can be used to
estimate the PSF characteristics of the final cube of images as a function of wavelength, to
facilitate subsequent photometric analysis.

2 An Overview of the Procedure

Figure 1 provides a high-level overview of the main steps of the PSF fitting procedure. Sub-
sequent sections describe the underlying reasons for these steps, and how they are performed.

The underlying rationale of the procedure is that if one had a perfect high resolution image
of the sky, then one could determine the PSF of a real low-resolution image by convolving
the perfect image by a succession of guesses at the PSF, until a good match to the real image
was obtained. In practice, in place of a perfect image of the sky, an HST image is used that
covers the same region as the target image. In this document, the image whose PSF is to
be determined, will be a MUSE image derived from a cube of narrow-band images.

In figure 1, the procedure is shown divided into two stages. In the Preparatory Stage, the
known properties of a target MUSE image and a corresponding HST image are used to
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Figure 1: An overview of the major steps in the PSF fitting procedure.

modify these images until the only differences between them should be the effect of the
MUSE PSF on the MUSE image. These steps decimate and re-grid the HST image onto the
coordinate grid of the MUSE image, apply the same decimation filter and the HST PSF to
the MUSE image, then arrange that any missing areas in either image are masked in both
images. They also smoothly taper down the edges of the image and the edges of masked
regions, to reduce the effects of pointing errors on the PSF fitting procedure.

The steps of the subsequent Fitting Stage then attempt to fit for the PSF of the MUSE
image by convolving the modified HST image by a sequence of guesses at the MUSE PSF,
until the difference between the two images is minimized. Simultaneously, the minimizing
algorithm also solves for telescope pointing errors and flux calibration errors. These steps are
performed in the Fourier plane. This is because PSF convolution and position corrections
are much more efficient in the Fourier plane than in the image plane.

3 Initial Development for Perfect Telescopes

The foundations of the technique will be introduced in this section. They will be described
initially as though the MUSE and HST observations were from perfect telescopes that didn’t
have gain errors, pointing errors, noise or background subtraction errors. Subsequent sections
will adjust the technique to take account of these issues.

For the MUSE observation whose PSF is to be measured, let the flux distribution on the sky
be, sm, the point-spread function of the observation be, pm, and the discrete sampling of
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the image, be the Dirac comb, IIIm. In terms of these functions, the MUSE image of the sky
can be written as follows. Note that ∗ denotes convolution, and · indicates multiplication.

fm = IIIm · (pm ∗ sm) (1)

The multiplication by the sampling function, IIIm, on the right hand side of this equation,
means that fm only has values at each delta function of IIIm, so this equation can equally be
written as follows.

IIIm · fm = IIIm · (pm ∗ sm) [MUSE] (2)

The HST observation that provides the reference image will generally have a different point-
ing center, a different orientation on the sky, and be sampled on a finer grid. The HST
image should thus be rotated to the orientation of the MUSE image, then resampled and
cropped, such that its pixels sample the same positions on the sky as the MUSE image. If
this re-gridded HST image is denoted, fh, then its view of the sky is as follows.

IIIm · fh = IIIm · (ah ∗ ph ∗ sm) [HST] (3)

This samples the same patch of sky, sm, as the MUSE image, and has the same sampling
grid, IIIm. However the PSF, ph, of the original HST image has been convolved with a new
term called, am. This term represents the low-pass decimation filter that has to be applied
before subsampling the 0.03′′ samples of the HST image to the 0.2′′ samples of the MUSE
image. Without this filter, high spatial frequencies in the HST image would be aliased
to lower spatial frequencies, producing artifacts and noise. More importantly, the discrete
convolutions that are fundamental to the PSF measuring technique would be invalidated, as
described in section A.4.

In appendix A, it is shown that for any continuous functions, b and c, (III · b) ∗ (III · c) is
equivalent to b ∗ c, provided that both b and c do not contain any frequency components
above half the sampling rate of the sampling function, III. For this reason, the sampling
functions will be omitted from subsequent equations.

Appendix A also shows that convolution is both commutative and associative, so a sequence
of convolutions in an equation like b ∗ c ∗ d can be performed in any order. With this knowl-
edge, the right hand sides of equations 2 and 3 could be made identical by first convolving
the MUSE image with the decimation-filter and the PSF of the HST image, and then by
convolving the HST image with the PSF of the MUSE image. However since the precise
PSFs of the two telescopes are unknown, estimates are used instead. If p′h is the estimated
HST PSF, and p′m is the estimated MUSE PSF, then this procedure results in the following
equations.

fm ∗ ah ∗ p′h = ah ∗ p′h ∗ pm ∗ sm [MUSE] (4)

fh ∗ p′m = ah ∗ ph ∗ p′m ∗ sm [HST] (5)
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The convolutions on the right-hand side of the two equations have been deliberately re-
ordered to emphasize the similarities between these equations. This is allowed because of
the commutative property of convolution.

If the estimates of the PSFs are accurate then the images calculated on the left hand sides
of the above two equations should be identical, so this provides a way to check whether a
particular guess at the MUSE PSF is correct. Unfortunately, the images will also match if
an error in the estimate of p′h is countered by a similar error in the estimate of p′m. However
if a reasonable estimate of p′h can be determined in advance, then successive guesses at the
MUSE PSF, p′m, can be tested by a least-squares comparison of the two images. This is the
basis of the technique for finding the PSF of a MUSE image. A reasonable model of the
HST PSF is found. Then the MUSE PSF is modeled as a Moffat function, and its two free
parameters are varied until the difference between the processed MUSE and HST images is
minimized in a least-squares sense.

The PSF of the HST is much narrower than the MUSE PSF, so a fractional error in the
estimated size of the HST PSF results in a much smaller fractional error in the fitted size
of the MUSE PSF. This means that the model of the HST PSF does not need to be very
accurate to yield a reasonable estimate of the MUSE PSF. In practice, a circularly symmetric
Moffat model of the HST PSF is used. The free parameters of are found by model-fitting
to a star, using an HST image that was observed in the same way as the HST image that is
used for fitting the MUSE PSF.

4 Accounting for flux and position calibration errors

The equations of the previous section did not take account of pointing errors, background
subtraction offsets, or gain errors. This section extends the basic technique to cope with
these issues. In later sections, the technique will be further extended to handle unsampled
regions of the sky, image saturation, and geometric distortions.

The MUSE and HST images each have different gain errors, background subtraction offsets
and pointing offsets. However for the purpose of fitting the PSF of the MUSE image, only
the relative errors are needed. If the flux scale, flux offset and the x-axis and y-axis pointing
errors of the MUSE image, relative to the HST image are represented by gm, bm, εx and εy,
respectively, then to account for these, equations 4 and 5 become as follows.

fm ∗ ah ∗ p′h = gm · ah ∗ p′h ∗ pm ∗ sm ∗ δεx ∗ δεy + bm + nm (6)

fh ∗ p′m = ah ∗ ph ∗ p′m ∗ sm + nh (7)

In these equations nm and nh represent random background noise in the MUSE and HST
images, respectively, and δεx stands for δ(x− εx), which is a delta function at a distance εx
along the X-axis of the images. The convolution sm ∗ δεx , shifts sm a distance εx along the
X-axis, and sm ∗ δεx ∗ δεy moves it by εx and εy along the X and Y axes, respectively.

At this point the right hand sides of equations 6 and 7 are clearly not equivalent. To make
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them equivalent within the noise, involves convolving the left hand side of equation 7 with
the same position shifting delta functions, multiplying the result by the same relative gain
error, then adding the relative flux offset. The result is as follows.

fm ∗ ah ∗ p′h = gm · ah ∗ p′h ∗ pm ∗ sm ∗ δεx ∗ δεy + bm + nm (8)

gmfh ∗ p′m ∗ δεx ∗ δεy + bm = gm · ah ∗ ph ∗ p′m ∗ sm ∗ δεx ∗ δεy + bm + nh
′ (9)

Where the term, nh
′, which equals gm · nh ∗ δεx ∗ δεy , is just a scaled and shifted version of

the original random HST detector noise.

At this point gm, bm, εx, εy and p′m are the unknowns that need to be determined by least
squares fitting. The left hand sides of equations 8 and 9 are what are actually calculated
for the fitting process, while the right hand sides of these equations show what the resulting
images are expected to contain. The left hand side of equation 8 is calculated once, before
the fitting process starts, whereas the left-hand side of equation 9 is repeatedly re-calculated
for different trial versions of the unknown parameters, until the difference between it and
equation 8 is minimized.

5 Edges, unsampled regions and saturated sources

If the edge of the MUSE and HST images cuts through a bright source, and there is any
position error between the two images, then one image will contain more of the source than
the other, resulting in a difference between the images that can not be resolved by shifting
the images. This can end up dominating the residuals between the processed images, causing
incorrect values to be fitted for the flux offset and gain parameters, which in turn affect the
fitted PSF parameters. To reduce this effect, both of the images are multiplied by an image
of weights that smoothly decrease from 1 to zero over a narrow margin just inside all edges
of the image.

The edges that are treated in this way are not just the sides of the images, but also any
areas of the images that are not sampled. Unsampled areas include areas where the HST
image does not fully overlap with the MUSE image, and areas that have been masked due
to instrumental problems, such as bad pixels. Any pixels that are saturated due to bright
sources should also be masked and treated as unsampled pixels.

The image of weights is first initialized such that pixels that are sampled by both telescopes
are set to 1, while the remaining pixels are set to zero. To reduce the effect of the edges
in this weighting image, the borders of the islands of unit valued pixels need to be tapered
slowly to zero. This can’t be done by simply smoothing the array of weights. That would
smear non-zero values into the unsampled regions, which should stay masked. Instead the
edges of the islands are first eroded using a square morphological erosion kernel. Then a
square smoothing kernel of the same size is used to smooth the eroded edges. Using the
same size for the erosion kernel and the smoothing kernel, ensures that the tapered edges
extend right up to the unsampled areas, but don’t encroach into them.
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For this procedure to work, the width of the kernels used for erosion and smoothing should
be an odd numbers of pixels. In the version of this procedure that is used for the MUSE
instrument, the default kernel width is 9 pixels. The rationale for this width will be explained
below.

Ideally the weighting image would be applied to the results of equations 8 and 9, to ensure
that the two processed images were identically weighted. However the purpose of the weight-
ing image is to replace sharply edges regions of missing data with zeros, and this has to be
done before anything can be done to these images. The initial MUSE image and the re-
gridded HST image are thus multiplied by the weighting image before any other operations
are performed.

fm
′ = fm ·w (10)

fh
′ = fh ·w (11)

The effect on equations 8 and 9 are shown below. Note that on the left hand side of equation 9
the estimated background offset, bm has also be scaled by the weight image, to make the two
equations as similar as possible.

fm
′ ∗ ah ∗ p′h = gm · ah ∗ p′h ∗ (w · (sm ∗ pm ∗ δεx ∗ δεy)) + bm ·w + nm ·w (12)

gm · fh′ ∗ p′m ∗ δεx ∗ δεy + bm ·w =

gm · (w · (ah ∗ ph ∗ sm)) ∗ p′m ∗ δεx ∗ δεy + bm ·w + nh
′ ·w (13)

Clearly the weighting image scales different parts of the first term of the right-hand side of
the above equations, so the equations are no longer precisely equal when the free parameters
are given their correct values. However in practice, the false differences introduced are small,
provided that the position error that is corrected by the δεx and δεy terms is smaller than the
width of the convolution kernel that was used to smooth the edges of the weight image. If
the edges of the weighting image weren’t smoothed, then the differences that they contribute
to these equations would be significant at high spatial frequencies. However by smoothing
the edges by 9 pixels, compared to the roughly 3 pixel FWHM of the MUSE PSF, ensures
that real sources in the image dominate over the effects of the edges.

Note that the above considerations would be invalidated if the weighting image were aug-
mented by widely varying statistical weights instead of being mostly 1.0, so the weighting
image is not a general solution for data weighting.

6 Accounting for geometric distortions

The method described in previous sections assumes that there are no significant geometric
distortions that make the true PSFs vary from one part of an image to another. If this is
not true, then the only way to handle this with the technique described in this document, is
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to break the images into smaller regions over which the geometric distortions are negligible,
and apply the PSF fitting technique separately to each of these regions.

7 An Efficient Implementation in the Fourier Plane

Although the basis of the PSF fitting method has been described in the image plane, it
can be implemented much more efficiently in the Fourier plane, where convolution of two
images just involves multiplying them together. In particular the convolution with δεx and
δεy can only be performed in the Fourier plane, because there is no way to Nyquist sample
a delta function in the image plane. An approximate equivalent in the image plane would
involve re-gridding the image for each trial position shift, but that would be much slower,
and it would introduce another gridding convolution function, which would then need to be
accounted for in the other image.

The Fourier transforms of the left hand sides of equations 12 and 13, are as follows.

fm
′ ∗ ah ∗ p′h

FT→ Fm
′ ·Ah ·P′h (14)

gm · fh′ ∗ p′m ∗ δεx ∗ δεy + bm ·w
FT→ gm · Fh

′ ·P′m · e−2πi(νx.εx+νy .εy) + bm ·W (15)

In these equations, νx and νy are the spatial frequencies of each pixel in the Fourier plane,
and capital letters are used to denote the Fourier transforms of corresponding lower-case
named images.

Before the least-squares fitting procedure begins, the right-hand side of equation 14 is pre-
calculated, as are the Fh

′ and W terms on the right-hand side of equation 15. Then, for
each set of trial values for gm, bm, εx, εy and P′m, the sum of the squares of the differences
between the two equations over all pixels is calculated as follows.

χ2(gm, bm, εx, εy,P
′
m) =

∑
νx,νy

(
Fm

′ ·Ah ·P′h − gm · Fh
′ ·P′m · e−2πi(νx.εx+νy .εy) − bm ·W

)2

(16)

The Levenberg-Marquardt least-squares fitting algorithm is used to adjust the free parame-
ters until χ2 is minimized.

7.1 Moffat PSFs and their Fourier Transforms

The point-spread functions of astronomical observations are frequently modeled as Moffat
functions, following the work of ?. This better models the PSF resulting from atmospheric
turbulence and telescope defects than a Gaussian. The peak of a Moffat function is similar to
a Gaussian, but further from the peak it decreases more slowly than a Gaussian, by a degree
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Figure 2: On the left, the radial cuts through a 2D Moffat PSF with
FWHM=1.0 and β = 2.0, and a Gaussian profile of the same FWHM for
comparison. On the right, the radial cuts through the 2D Fourier transforms
of these PSFs.

that depends on a parameter, β. When β is unity, the Moffat function is equivalent to a
Lorenz function, which is a function that falls much more slowly than a Gaussian. Increased
values of β result in ever closer approximations of a Gaussian function.

In the image plane, the radial profile of a two dimensional Moffat function is defined as
follows.

p(r) =
β − 1

πα2

1(
1 + r2

α2

)β (17)

Where α2 is proportional to the full-width at half-maximum (FWHM) of the Moffat function,
as follows.

α2 =
FWHM

2

4(2
1
β − 1)

(18)

Unfortunately there is no analytic form for the Fourier transform of a Moffat function, so to
convolve an image with a Moffat PSF of a given FWHM and β, it is necessary to first create
an image of that PSF, take the Fast Fourier Transform of both this and the image to be
convolved, multiply these in the Fourier plane, and then take an inverse Fourier transform
to obtain the convolved image. As described in section A.4, care must be taken to ensure
that the image of the Moffat PSF is on a sufficiently fine grid as that it is essentially Nyquist
sampled.

The PSF of the MUSE image is adequately sampled by the MUSE pixel grid, so a Moffat
model of this can be sampled with the pixel spacing of the MUSE image that is being
characterized. This is not true for the HST PSF, however. Although the HST PSF is
adequately sampled by the 0.03′′ pixel spacing of the original HST image, this pixel spacing
is about seven times smaller than the pixel spacing of MUSE images, and a single pixel of
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a MUSE image is twice as wide as the FWHM of the HST PSF. So the HST PSF must be
sampled with pixels that are at least seven times smaller than MUSE pixels. In practice a
factor of eight is used, for reasons that will become apparent.

If a two-dimensional image has Nx×Ny pixels, and a pixel spacing of dx and dy arc-seconds
along the X and Y axes, then the FFT of this image has pixels in the Fourier plane that have
spacings of 1

Nxdx
and 1

Nydy
cycles/arc-second along the X and Y frequency axes. To perform

a convolution by multiplying corresponding pixels of two discrete Fourier transforms, the
two Fourier transforms must have the same pixel spacing in the Fourier plane. This is true
if the products Nxdx and Nydy are the same for both images. So if the pixel spacings of one
of the images are decreased to dx/ρ and dy/ρ, then the array dimensions of that image must
be increased by the same amount, to ρNx×ρNy. In practice, both images should have array
dimensions that are integer powers of two, to optimize the speed of the FFT algorithm. If
Nx and Ny are powers of two, then the array dimensions of the more finely sampled image
will also be powers of two if the pixel size reduction factor is an integer power of two. For
this reason, a pixel-size reduction factor of 8 is used to create the image of the Moffat model
of the HST PSF. In the Fourier plane, this results in a Fourier transform that has 8 times as
many pixels along each axis as the MUSE image to be convolved. Only the inner Nx × Ny

pixels of this FFT are used to multiply the FFT of the MUSE image. Fortunately the
large FFT of the finely gridded HST PSF only has to be computed once, before the fitting
procedure begins.

7.2 The Decimation Filter

As described in section A.3, before resampling an image onto a coarser grid, it should be
smoothed by a decimation filter to remove any flux at spatial frequencies above half the new
sampling rate. Resampling an HST image onto the pixel size of a MUSE image, involves
increasing the pixel size from 0.03′′ to 0.2′′, which is a factor of almost seven.

7.2.1 Filtering in the image domain

To apply a decimation filter in the image domain one first needs to obtain the inverse Fourier
transform of the desired 2D filter curve, sampled with the same pixel interval as the image.
This is commonly called a convolution kernel, and it is usually much smaller than the image
that is to be filtered. The image is convolved with this kernel to filter it.

The width of the convolution kernel that is needed to implement a decimation filter, can be
estimated using the following equation, which is derived from equation 5-49 of ?.

Nw =
αfs

22Btr

(19)

This equation estimates the width of the convolution kernel of an FIR filter with a given
stop-band attenuation, α (dB), and a given transition bandwidth between the pass-band
and the stop-band. The transition bandwidth, Btr, is the frequency interval over which the
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filter’s response smoothly decreases from unity to the desired stop-band attenuation. In the
equation, fs, is the sampling frequency of the image before downsampling.

A reasonable stop-band attenuation is 60dB. When decimating an HST image that has 0.03′′

pixels, fs is 1/0.03′′. The sampling frequency of the resampled MUSE image is 1/0.2′′, and
the cutoff frequency of the low-pass filter should be about half this frequency, fcut = 1/0.4′′.
The transition bandwidth of the filter is a fraction of the cutoff frequency between 0 and 1. To
implement a filter that is essentially flat up to about half the cutoff frequency, Btr = 1/0.8′′.
This yields Nw = 72.7 pixels. So to adequately filter an HST image before resampling it to
the MUSE pixel size, would require one to convolve it with a convolution kernel of 73x73
pixels. That would be inefficient in the image plane.

7.2.2 Filtering in the Fourier domain

Filtering the HST image in the Fourier domain is done by taking a Fast Fourier Transform
(FFT) of the HST image, multiplying this by a window function that goes to zero at half
the sampling rate of the MUSE pixel grid, then performing an inverse FFT on the result, to
obtain the filtered HST image.

Before the performing the FFT, zero valued margins must be added beyond the end pixels of
the X and Y axes. The size of this margin should be at least as large as the convolution kernel
would have been in the image plane, to avoid the wrap-around effects of circular convolution.
Using the example given above for the requirements for image-plane convolution, at least 73
pixels of zeros should be added at the ends of the X and Y axes when decimating an HST
image onto the pixel grid of a MUSE image.

After padding the image with zeros to avoid circular convolution, the margins should be
widened if the image dimensions are not integer powers of two. This is because FFTs can
be extremely slow when applied to images whose dimensions are not powers of two.

7.2.3 The Decimation Filter Window Function

There are many commonly known window functions that could be used to implement a
decimation filter in the Fourier plane. However the one that seems to be optimal from
the point of view of avoiding the appearance of ringing artifacts near bright point sources,
saturated regions and other abrupt changes in the image plane, seems to be the Blackman
window, which has a stop-band attenuation of 60dB. When used to implement a decimation
filter, it is defined as follows.

w(k) = 0.42 + 0.5 cos

(
πf(k)

fc

)
+ 0.08 cos

(
2πf(k)

fc

) ∣∣∣∣
|f(k)|≤fc

(20)

= 0.0 ||f(k)|>fc

Where f(k) is the spatial-frequency of pixel k of the image, and fc is the desired cutoff
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Figure 3: The graphs on the right show radial cuts through circularly symmet-
ric 2D Blackman and Gaussian window functions in the Fourier plane. The
Blackman window has a cutoff frequency, fc, of half the sampling rate of an
HST image with 0.03′′ pixels. The graphs on the left show radial cuts through
the 2D inverse Fourier transforms of these window functions, showing their ef-
fect on point sources. The width of the Gaussian window was chosen to make
the FWHMs of the inverse Fourier transforms of both windows match in the
image plane.

spatial-frequency. For a decimation window, fc is half the sampling rate of the final image
(ie. the MUSE image in our case).

To satisfy the sampling requirements for decimation, it would be sufficient to apply the
above window first along the X axis, then separately along the Y axis. However this results
in a PSF that is not circularly symmetric. To make it circularly symmetric, fk should be√
fx(k)2 + fy(k)2, where fx(k) and fy(k) are the spatial frequencies of pixel k along the X

and Y axes of the Fourier transform, respectively.

The Blackman window completely cuts off frequency components above the cutoff frequency.
As can be seen in figure 3, this results in low-level ringing in its point-source response in the
image plane, at a level of 1/1000 of the peak value.

A Gaussian window function could also be used for this purpose. However a Gaussian window
does not fall to zero at the cutoff frequency. If the frequency coverage of the Fourier transform
extends significantly past the desired cutoff frequency, then the result will be some low level
aliasing. If the frequency coverage doesn’t extend far past the cutoff frequency, however,
then the truncation of the Gaussian window produces worse ringing in the image plane than
the Blackman window. In the plot, the FWHM of the Gaussian window in the Fourier plane
was set to:

guassian fwhm = 0.72555fc (21)

Under the assumption that the Gaussian window in the Fourier plane extends significantly
beyond the cutoff frequency, this ensures that the image-plane responses to the Blackman
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and Gaussian windows, have matching FWHMs.

8 Generating MUSE images with an HST filter-curve

The HST cameras provide a selection of filters that can be used to constrain the wavelength
range of an observation. Of these, the F606W, F775W, F814W and F850LP filters signif-
icantly overlap the wavelength range of the MUSE spectrometer. HST observations taken
with these filters can be used with the technique described in this document, to fit for the
PSFs of MUSE images. For this to work well, the corresponding MUSE images must have
the same filter curve as the HST observation. The MUSE IFS generates a cube of 3681
narrow-band images, spaced in wavelength by 0.125 nm, from 475 nm to 935.125 nm. To
generate a MUSE image that has the filter curve of an HST image, each narrow-band MUSE
image is multiplied by the integral of the HST filter-curve over its wavelength range, then
the scaled MUSE images are summed and divided by the integral of the filter-curve over the
range of the MUSE channels.

fm(x, y) =

∑Nλ
i=1mi(x, y) ·

∫ λi+∆λ/2

λi−∆λ/2
hf (λ)δλ∫ λNλ+∆λ/2

λ1−∆λ/2 hf (λ)δλ
(22)

In the above equation, mi(x, y) represents the ith image of a MUSE cube, Nλ is the number
of images in the cube, λi is the central wavelength of channel i of the cube, ∆λ is the width
of a channel in the cube, and hf (λ) is the interpolated value of the filter curve at wavelength,
λ. The final MUSE image is fm(x, y).

HST filter curves are not sampled at fixed wavelength intervals. To interpolate each HST
filter-curve, a cubic-spline is fit to it.

A Convolution, Sampling and Fourier transforms

The technique described in this document relies heavily on the relationships between convo-
lution, discrete sampling and Fourier transforms, so this appendix has been added to clarify
them.

A.1 The Convolution theorem

The convolution theorem is fundamental to understanding the relationships between sam-
pling, convolution and Fourier transforms. The convolution theorem simply states that
convolution and multiplication are Fourier transform pairs. Specifically, if f(t) and g(t) are
continuous functions of time, and F (ν) and G(ν) are their continuous Fourier transforms
versus frequency, then:
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f(t) ∗ g(t)
FT→ F (ν) ·G(ν) (23)

f(t) · g(t)
FT→ F (ν) ∗G(ν) (24)

Where ∗ denotes convolution, and · denotes multiplication.

A.2 Commutative and Associative properties of convolution

Since multiplication is commutative, associative and distributive, it follows that convolution
has these properties too, because the Fourier transform of a convolution is a multiplication
and the Fourier transform of a sum of two terms is the sum of the Fourier transforms of
those terms. For example, the right hand sides of the following two equations have the same
values, because the operands of a multiplication can be swapped without changing the result,
so f(t) ∗ g(t) = g(t) ∗ f(t).

f(t) ∗ g(t)
FT→ F (ν) ·G(ν) (25)

g(t) ∗ g(t)
FT→ G(ν) · F (ν) (26)

Similarly in the following equation, the associative property of multiplication means that the
terms of the right hand side of the equation can be reordered without changing its value.
Since the ordering on the right hand side reflects the order of the convolution operands on
the left hand side, this indicates that the order of the convolutions is equally unconstrained,
so convolution is also associative.

{f(t) ∗ g(t)} ∗ h(t)
FT→ F {f(t) ∗ g(t)} ·H(ν) = F (ν) ·G(ν) ·H(ν) (27)

Finally, it is clear that the right hand sides of equations 28 and 29, have the same values,
and this demonstrates that convolution is distributive.

f(t) ∗ [g(t) + h(t)]
FT→ F (ν) · F{g(t) + h(t)}
= F (ν) · [G(ν) +H(ν)] (28)

f(t) ∗ g(t) + f(t) ∗ h(t)
FT→ F (ν) ·G(ν) + F (ν) ·H(ν) (29)

A.3 Sampling of continuous functions

A continuous function, f(t), that is sampled at regular intervals, τ , can be written as the
product, IIIτ (t) · f(t), where IIIτ (t) is a Dirac comb of period τ . According to the convolution
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theorem, the Fourier transform of this product is a convolution of the Fourier transform of
IIIτ (t) with the Fourier transform of f(t). The Fourier transform of IIIτ (t) is another Dirac
comb of period 1/τ , so the result can be written as follows.

IIIτ (t) · f(t)
FT→ III 1

τ
(ν) ∗ F (ν) (30)

The convolution of F (ν) with III 1
τ
(ν), generates a periodic sum of copies of F (ν), shifted

by successive intervals of 1/τ Hz. If f(t) has been low-pass filtered to remove frequency
components above 1

2τ
, then each period of this sum is identical to a shifted copy of F (ν).

However this is not true if f(t) contains any frequencies above 1
2τ

, because then F (ν) is so
wide that neigboring copies of F (ν) overlap in the sum. The overlap is known as aliasing,
which converts high frequency components of f(t) into undesirable low frequency artifacts
in the sampled signal. To avoid aliasing, one can either sample at a frequency that is greater
than twice the highest frequency in f(t), or low-pass filter f(t) to remove frequencies above
half the desired sampling rate.

The filter that is used to remove high frequencies is commonly known as a decimation filter
or anti-aliasing filter. This filter needs to be applied before sampling a continuous analog
signal, and also when data that have already been sampled, are re-sampled onto a coarser
grid. Failure to apply a decimation filter results in low-frequency artifacts such as ringing
next to steps in the image plane, increased noise due to high frequency noise being folded
to lower frequencies, and the elimination of small features that happen to lie between the
sampling points of the coarser grid.

When the pixel size of an array is to be increased by an integer factor, N , it is tempting to
calculate the new pixel values as sums of successive sequences of N pixels. However each
of these sums acts like a boxcar decimation filter. In the Fourier plane this is equivalent
to multiplying the Fourier transform of the data by the main lobe of a sync function. The
first zero of this sync function is at half the sampling frequency of the new pixel size, so at
that frequency it meets the Nyquist sampling requirements. However the sync function has
significant sidelobes at higher frequencies, so any noise or sharp edges at those frequencies
are still aliased to lower spatial frequencies in the re-sampled data.

Rather than summing neighboring pixels with equal weights, it is better to apply a well
designed low-pass filter to the data, then sub-sample or interpolate the smoothed data.
When down-sampling an image, the decimation filter can be applied in the spatial domain,
by convolving the image with a smoothing kernel. Alternatively it can be done by taking the
Fourier transform of the data, multiplying this by a window function that falls smoothly to
zero at half the sampling rate, then performing an inverse Fourier transform to recover the
smoothed data. The image-plane approach is faster for small decimation factors. However
its processing time increases as the square of the decimation factor, so Fourier plane filtering
is faster for large decimation factors.
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A.4 The Convolution of two Discrete functions

The convolution theorem refers to the convolution of continuous functions. Some care must
be taken when using discrete Fourier transforms to perform convolution. To convolve two
continuous functions whose Fourier transforms are not known, the obvious approach is to
grid these functions in the image plane, use the FFT algorithm to obtain their discrete
Fourier transforms, multiply the discrete Fourier transforms together, and then perform an
inverse FFT to obtain a discrete version of the convolved function. The assumption in this
procedure is that the following equation is valid.

[IIIτ (t) · f(t)] ∗ [IIIτ (t) · g(t)] ≡ IIIτ (t) · [f(t) ∗ g(t)] (31)

If this is true, then the Fourier transforms of the two sides of the above equation should also
be equivalent, as follows.

[III 1
τ
(ν) ∗ F (ν)] · [III 1

τ
(ν) ∗G(ν)] ≡ III 1

τ
(ν) ∗ [F (ν) ·G(ν)] (32)

These Fourier transforms are periodic with a period of 1
τ
, so if both sides are equivalent

within the frequency range, − 1
2τ
≤ ν ≤ 1

2τ
, then they are also equivalent at all frequencies.

If f(t) and g(t) have both been band-limited to suppress frequencies above 1
2τ

, then within
this frequency range of the Fourier transform, III 1

τ
(ν)∗F (ν) = F (ν) and III 1

τ
(ν)∗G(ν) = G(ν).

Thus the left hand side of equation 32 is identical to F (ν)·G(ν) over one period of the Fourier
transform. Similarly, if f(t) and g(t) are bandlimited, then so is f(t) ∗ g(t), so the left hand
side of equation 32 is also identical tor F (ν) ·G(ν) over one period of the Fourier transform.
Thus equations 31 and 32 are valid if both f(t) and g(t) are appropriately band-limited.

The above equations are not valid, however, if either of f(t) or g(t) is undersampled, and
the aliased frequencies of that function overlap with non-zero parts of the spectrum of the
other function. So when convolving an image with an analytic function that is narrow in the
image plane, it is essential that the analytic function be sampled adequately in the image
plane to avoid aliasing. For example, when convolving a low resolution image with the PSF
of a much higher resolution image, it is likely that the PSF is undersampled by the sampling
interval of the lower resolution image, so the PSF must be sampled on a finer grid than the
lower resolution image before it is Fourier transformed.

When an image is to be convolved with a 2D function that needs to be sampled onto a finer
grid than the image, it is beneficial to sample the function onto a grid that covers the same
area as the image, but that divides this area into a larger number of pixels. In the Fourier
plane, the spatial-frequency sampling interval is set by the overall width and height of the
image that is Fourier transformed, not by the pixel size in the image plane, so by doing this,
the innermost pixels of the FFT of the more finely sampled function have the same spatial
frequencies as the FFT of the image, and these can then be multiplied with those of the
image to perform the convolution.
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A.5 Convolution of Discrete and Continuous Functions

When an image is to be convolved with a function whose continuous Fourier transform is
known, there is no need to perform a discrete Fourier transform of the function, so there
is no need to worry about aliasing of this function. In this case one takes the FFT of the
image, multiplies this by the analytical Fourier transform of the function to be convolved,
then performs an inverse FFT to obtain the gridded version of the convolution.

[IIIτ (t) · f(t)] ∗ g(t)
FT→ [III 1

τ
(ν) ∗ F (ν)] ·G(ν) (33)

The result of the multiplication on the right hand side of the above equation is clearly a
function that is sampled at frequency intervals of 1

τ
, which means that the result of the

convolution, on left hand side of the equation, is still sampled on the original image grid.
We also know that if f(t) is a band-limited function, with no frequency components above
ν > 1

2τ
, then [III 1

τ
(ν) ∗ F (ν)] is identical to F (ν) within one period of the periodic Fourier

transform of the right hand side, so the sampled left hand side of the equation, in this case
must be the same as IIIτ (t) · [f(t) ∗ g(t)]. So the conclusion is that:

[IIIτ (t) · f(t)] ∗ g(t) ≡ IIIτ (t) · [f(t) ∗ g(t)] (34)
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